Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2234402

ABSTRACT

Baculoviruses are enveloped, insect-specific viruses with large double-stranded DNA genomes. Among all the baculovirus species, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most studied. Due to its characteristics regarding biosafety, narrow host range and the availability of different platforms for modifying its genome, AcMNPV has become a powerful biotechnological tool. In this review, we will address the most widespread technological applications of baculoviruses. We will begin by summarizing their natural cycle both in larvae and in cell culture and how it can be exploited. Secondly, we will explore the different baculovirus-based protein expression systems (BEVS) and their multiple applications in the pharmaceutical and biotechnological industry. We will focus particularly on the production of vaccines, many of which are either currently commercialized or in advanced stages of development (e.g., Novavax, COVID-19 vaccine). In addition, recombinant baculoviruses can be used as efficient gene transduction and protein expression vectors in vertebrate cells (e.g., BacMam). Finally, we will extensively describe various gene therapy strategies based on baculoviruses applied to the treatment of different diseases. The main objective of this work is to provide an extensive up-to-date summary of the different biotechnological applications of baculoviruses, emphasizing the genetic modification strategies used in each field.


Subject(s)
COVID-19 , Nucleopolyhedroviruses , Animals , Humans , Baculoviridae/genetics , COVID-19 Vaccines/metabolism , Nucleopolyhedroviruses/genetics , Spodoptera
2.
Biotechnol Bioeng ; 118(10): 4129-4137, 2021 10.
Article in English | MEDLINE | ID: covidwho-1310445

ABSTRACT

Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this study, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed. We established a rapid production process for SARS-CoV-2 S protein that showed immunoreactivity for anti-SARS-CoV-2 antibodies and was used as a single antigen for developing the ELISA method with high sensitivity (96.2%) and specificity (98.8%). Our findings provide an efficient and cost-effective platform for large-scale S protein production, and the scale-up is linear, thus avoiding the use of complex equipment like bioreactors.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Animals , Larva/metabolism , Larva/virology , Nucleopolyhedroviruses , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , SARS-CoV-2/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera
3.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: covidwho-827743

ABSTRACT

TER94 is a multifunctional AAA+ ATPase crucial for diverse cellular processes, especially protein quality control and chromatin dynamics in eukaryotic organisms. Many viruses, including coronavirus, herpesvirus, and retrovirus, coopt host cellular TER94 for optimal viral invasion and replication. Previous proteomics analysis identified the association of TER94 with the budded virions (BVs) of baculovirus, an enveloped insect large DNA virus. Here, the role of TER94 in the prototypic baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) life cycle was investigated. In virus-infected cells, TER94 accumulated in virogenic stroma (VS) at the early stage of infection and subsequently partially rearranged in the ring zone region. In the virions, TER94 was associated with the nucleocapsids of both BV and occlusion-derived virus (ODV). Inhibition of TER94 ATPase activity significantly reduced viral DNA replication and BV production. Electron/immunoelectron microscopy revealed that inhibition of TER94 resulted in the trapping of nucleocapsids within cytoplasmic vacuoles at the nuclear periphery for BV formation and blockage of ODV envelopment at a premature stage within infected nuclei, which appeared highly consistent with its pivotal function in membrane biogenesis. Further analyses showed that TER94 was recruited to the VS or subnuclear structures through interaction with viral early proteins LEF3 and helicase, whereas inhibition of TER94 activity blocked the proper localization of replication-related viral proteins and morphogenesis of VS, providing an explanation for its role in viral DNA replication. Taken together, these data indicated the crucial functions of TER94 at multiple steps of the baculovirus life cycle, including genome replication, BV formation, and ODV morphogenesis.IMPORTANCE TER94 constitutes an important AAA+ ATPase that associates with diverse cellular processes, including protein quality control, membrane fusion of the Golgi apparatus and endoplasmic reticulum network, nuclear envelope reformation, and DNA replication. To date, little is known regarding the role(s) of TER94 in the baculovirus life cycle. In this study, TER94 was found to play a crucial role in multiple steps of baculovirus infection, including viral DNA replication and BV and ODV formation. Further evidence showed that the membrane fission/fusion function of TER94 is likely to be exploited by baculovirus for virion morphogenesis. Moreover, TER94 could interact with the viral early proteins LEF3 and helicase to transport and further recruit viral replication-related proteins to establish viral replication factories. This study highlights the critical roles of TER94 as an energy-supplying chaperon in the baculovirus life cycle and enriches our knowledge regarding the biological function of this important host factor.


Subject(s)
Adenosine Triphosphatases/metabolism , Nucleocapsid/metabolism , Nucleopolyhedroviruses/physiology , Virus Replication , Animals , Cell Nucleus/virology , Cytoplasm/virology , DNA Helicases/metabolism , DNA, Viral/biosynthesis , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Sf9 Cells/virology , Vacuoles/virology , Viral Proteins/metabolism , Virion
4.
Biochem Biophys Res Commun ; 529(2): 257-262, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-591648

ABSTRACT

In the case of a new viral disease outbreak, an immediate development of virus detection kits and vaccines is required. For COVID-19, we established a rapid production procedure for SARS-CoV-2 spike protein (S protein) by using the baculovirus-silkworm expression system. The baculovirus vector-derived S proteins were successfully secreted to silkworm serum, whereas those formed insoluble structure in the larval fat body and the pupal cells. The ectodomain of S protein with the native sequence was cleaved by the host furin-protease, resulting in less recombinant protein production. The S protein modified in furin protease-target site was efficiently secreted to silkworm serum and was purified as oligomers, which showed immunoreactivity for anti-SARS-CoV-2 S2 antibody. By using the direct transfection of recombinant bacmid to silkworms, we achieved the efficient production of SARS-CoV-2 S protein as fetal bovine serum (FBS)-free system. The resultant purified S protein would be useful tools for the development of immunodetection kits, antigen for immunization for immunoglobulin production, and vaccines.


Subject(s)
Bombyx/cytology , Bombyx/virology , Nucleopolyhedroviruses/genetics , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/isolation & purification , Animals , Bombyx/enzymology , Cell Line , Cloning, Molecular , Furin/metabolism , Nucleopolyhedroviruses/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL